A Simple Linear Ranking Algorithm Using Query Dependent Intercept Variables
نویسنده
چکیده
The LETOR website contains three information retrieval datasets used as a benchmark for testing machine learning ideas for ranking. Algorithms participating in the challenge are required to assign score values to search results for a collection of queries, and are measured using standard IR ranking measures (NDCG, precision, MAP) that depend only the relative score-induced order of the results. Similarly to many of the ideas proposed in the participating algorithms, we train a linear classifier. In contrast with other participating algorithms, we define an additional free variable (intercept, or benchmark) for each query. This allows expressing the fact that results for different queries are incomparable for the purpose of determining relevance. The cost of this idea is the addition of relatively few nuisance parameters. Our approach is simple, and we used a standard logistic regression library to test it. The results beat the reported participating algorithms. Hence, it seems promising to combine our approach with other more complex ideas.
منابع مشابه
RRLUFF: Ranking function based on Reinforcement Learning using User Feedback and Web Document Features
Principal aim of a search engine is to provide the sorted results according to user’s requirements. To achieve this aim, it employs ranking methods to rank the web documents based on their significance and relevance to user query. The novelty of this paper is to provide user feedback-based ranking algorithm using reinforcement learning. The proposed algorithm is called RRLUFF, in which the rank...
متن کاملWeb pages ranking algorithm based on reinforcement learning and user feedback
The main challenge of a search engine is ranking web documents to provide the best response to a user`s query. Despite the huge number of the extracted results for user`s query, only a small number of the first results are examined by users; therefore, the insertion of the related results in the first ranks is of great importance. In this paper, a ranking algorithm based on the reinforcement le...
متن کاملA new approach for Robot selection in manufacturing using the ellipsoid algorithm
The choice of suitable robots in manufacturing, to improve product quality and to increase productivity, is a complicated decision due to the increase in robot manufacturers and configurations. In this article, a novel approach is proposed to choose among alternatives, differently assessed by decision makers on different criteria, to make the final evaluation for decision-making. The approach i...
متن کاملTowards Supporting Exploratory Search over the Arabic Web Content: The Case of ArabXplore
Due to the huge amount of data published on the Web, the Web search process has become more difficult, and it is sometimes hard to get the expected results, especially when the users are less certain about their information needs. Several efforts have been proposed to support exploratory search on the web by using query expansion, faceted search, or supplementary information extracted from exte...
متن کاملSolving Fully Fuzzy Linear Programming Problems with Zero-One Variables by Ranking Function
Jahanshahloo has suggested a method for the solving linear programming problems with zero-one variables. In this paper we formulate fully fuzzy linear programming problems with zero-one variables and a method for solving these problems is presented using the ranking function and also the branch and bound method along with an example is presented.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009